Is Cape Cod a Natural Delineation for Migratory Patterns in US and Canadian Spiny Dogfish Stocks?

Roger Rulifson ${ }^{1}$, Michael Pratt ${ }^{2}$, Thomas Bell ${ }^{3}$, Ian Parente ${ }^{4}$, Jennifer Cudney-Burch ${ }^{1}$, Andrea Dell'Apa ${ }^{1}$
1 Institute for Coastal Science and Policy, East Carolina University, Flanagan 250, Greenville, NC 27858
2 Commercial Fisherman, 4 Charles Street, Canton, MA 02021
3 Commercial Fisherman, 22 Ridge Hill Rd., Scituate, MA 02066
4 Commercial Fisherman, 305 Long Highway, Little Compton, RI 02837

December 17, 2012

Spiny dogfish (Squalus acanthias)

> Ovoviviparus: pups TL 18 - 33 cm at born
> Gonochoristic with sexual segregation:
q larger, inshore shallower waters
§ smaller, deeper offshore waters
$>$ K-selected:
long gestation (≈ 2 years); slow growth rate; age at maturity 8-10 years for of (> 60 cm) and12-15 for \uparrow (> 80 cm)
$>$ Cosmopolitan: from the surface to below 600 m
$>$ Discussed for inclusion in CITES App.-II
(Jensen 1965; Nammack et al., 1982; Sheperd et al., 2002; Compagno et al., 2005; Fordham, 2009)

Source: CITES (CoP15 Prop. 18)

The Spiny Dogfish International Trade

	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$
Iceland	31	73	67	48	32	70	107	221	150	95	45
Norway	3132	2416	1394	1065	1239	1447	1396	1108	1080	991	937
USA	7581	8938	8181	6817	6317	3761	1671	1664	909	753	720
Canada	469	145	228	370	599	1003	1569	1610	1540	1752	1484
Morocco	0	0	0	0	0	71	206	212	190	388	460
Mauritania	168	206	52	90	66	292	305	91	61	0	43
Argentina	204	313	68	256	253	232	310	263	341	119	315
New											
Zealand	29	5	18	15	71	152	195	448	319	244	250
Others	312	209	164	116	120	210	106	195	184	192	351
Total	11926	12305	10171	8778	8696	7238	5863	5811	4774	4534	4605

> The EU market demands for larger individuals (Lack, 2006)
$>$ o constituted 93\% of US landings between 1998-2002, and 76\% of estimated dead discards between 1989-2000 (NEFSC, 2003; Rago and Sosebee, 2010)
> Increased skewed sex ratio (7:1 M:F) and smaller sized reproductive females (that produce fewer, smaller offspring) due to low recruitment (SAW/SARC, 2006)

US Atlantic Spiny Dogfish FMP

> 1998, NMFS declared the US North Atlantic stock overfished
$>$ 1999, NEFMC-MAFMC FMP in federal waters (3-200 miles offshore)
> 2002, ASMFC-FMP in state waters (0-3 miles offshore)
> 2010, NOAA declared the stock rebuilt
> TAC increased to 15 million lb for 2010/11 and to 30 million lb for 2012/13, with a 3,000 lb maximum possession limit per vessel trip
$>$ Proposed TAC to 40.8 million lb for 2013, and $4,000 \mathrm{lb}$ maximum possession limit per vessel trip for 2013/15 (MAFMC, 2012)

TAC Allocation for the US Atlantic

$>$ TACs allocation system based on the species seasonal migration
> Fishery sustainability measured by SSB: adult female (> 80 cm) biomass estimate by NMFS-NEFSC spring trawl survey
$>$ NMFS considers the NW Atlantic as a single population (NMFS, 2006)
> New paradigm suggests the presence of multiple stocks, with a limited rate of intermixing ($\approx 10 \%$) off New England and Cape Cod (Campana, 2010; Rulifson, 2010)

Study Area

> Longline fishers LEK: daily M:F ratio (R) changes throughout a normal fishing day
$>$ Similar preliminary results by research survey conducted using commercial longlines (Rulifson, 2008; 2010)
$>$ Male-only directed fishery???? (Rago and Sosebee, 2008)

Goal and Objectives

$>$ To estimate the amount of mixing between US and Canadian spiny dogfish stocks
$>$ To conduct fishery-dependent surveys in the study area to test for the occurrence of changes in the male:female ratio (R) reported by local fishers
$>$ To determine the relationships between R , geographic location, environmental conditions, and local fishery characteristics

Goal and Objectives

$>$ Multiple tagging techniques (external and acoustic tags) to assess dogfish migratory behavior
> Analyses of sex ratio composition throghout a typical commercial fishing day and assessment of changes in R by season and fishing gear

Methods

> Commercial Gillnets (10 panels, 6.5 cm stretch mesh size $\times 300 \mathrm{ft}=3,000 \mathrm{ft}$ line) and longline (4 bundles $\times 1,500 \mathrm{ft}=6,000 \mathrm{ft}$ line. 300 hooks \times bundle $=1,200$ hooks. Squid as bait)

> October 7-13, 2010; May 9-17, 2011; June 22-28, 2011; August 14-17, 2011
> STAR-ODDI DST Centi TD: average T $\left({ }^{\circ} \mathrm{C}\right)$ at gear depth and average gear depth (m)

Data NA for October, 2010
> YSI Model 85: surface water T $\left({ }^{\circ} \mathrm{C}\right)$, salinity (ppt)
$>42^{\circ} \mathrm{N}$ Lat. for dividing N and S area

Methods

> Sex, length (TL in mm), tagged and released
> External tags (FLOY SS-94) external red button tags (FLOY Oval tag) and internal acoustic tags (VEMCO V16)

$$
>\quad \mathrm{IR}=\frac{\left[\left(\frac{X r s}{\text { Ntotn }}\right)+\left(\frac{X r n}{\text { Ntots }}\right)\right]}{2}
$$

Methods

Methods for Sex Ratio Study

>59 surveys conducted at $N(\mathrm{n}=39)$ and $\mathrm{S}(\mathrm{n}=20)$ of Cape Cod ($42^{\circ} \mathrm{N}$ Lat)

$>$ Spearman's rank correlation coefficient (ρ)
$>$ Kruskal-Wallis single factor ANOVA $\mathrm{R}, \mathrm{o}^{\lambda}$ and q total No depth strata:
$0=0-29.9 \mathrm{~m}, 1=30-44.9 \mathrm{~m}, 2>45 \mathrm{~m}$
time strata:
"morning" 0 = 6:00 AM - 12:59 AM "afternoon" $1=1: 00$ PM - 6:59 PM "night" $2=7: 00$ PM - 5:59 AM
$>$ Wilcox non-parametric t.test
$>$ Chi-squared test or G-test - changes in R , and in $\bar{\delta}$ and q total No and avg TL throughout a fishing day

Results

	Fall 2010		
	Males	Females	Subtotal
North			
Gillnet	33	678	711
Longline	5	660	665
South			
Gillnet	30	558	588
Longline	573	94	667
Subtotal	641	1990	2631
		Spring 2011	
	Males	Females	Subtotal
North			
Gillnet	0	570	570
Longline	4	599	603
South			
Gillnet	30	561	591
Longline	8	584	592
Subtotal	42	2314	2356
		Summer 2011	
	Males	Females	Subtotal
North			
Gillnet	196	473	669
Longline	143	551	694
South			719
Gillnet	474	245	7676
Longline	650	26	676
Subtotal	1463	1295	2758
Total	$\mathbf{2 1 4 6}$	$\mathbf{5 5 9 9}$	$\mathbf{7 7 4 5}$

External Tags:

>89 sets (54 in the N and 35 in the S)
$>$ Catch composition: 72.3% O ; 27.7\% §

- Catch by area: 3,912 at N and 3,833 at S

Acoustic Tags:

	Males	Females	Subtotal
North	18	42	60
South	24	36	60
Total	$\mathbf{4 2}$	$\mathbf{7 8}$	$\mathbf{1 2 0}$

Acoustic Tags

$>\mathrm{n}=58$ (12 § and 46 个)
$>48.3 \%$ recapture rate
$>63.8 \%$ ($n=37$) released at N and $36.2 \% ~(\mathrm{n}=21)$ released at S
$>$ North: 94.6\% (n=35) redetected in the N area. South: 28.6\% ($\mathrm{n}=6$) redetected in the S area.
> Average IR=38.4\%
$>$ More females redetected than males ($\mathrm{X}^{2}=10.1$, $\mathrm{P}=0.01$) with and Odd Ratio=3.59

M:F Ratio (R)

q 91.2\% of adult size; o 99.9% of adult size ($q>80 \mathrm{~cm}$; $\widehat{\gamma}>60 \mathrm{~cm}$; Nammack et al., 1985)
q always caught; \jmath^{λ} in $62.7 \%(n=37)$ of sets
$86.4 \%(n=51)$ of sets with $R<1$
$13.6 \%(\mathrm{n}=8)$ of sets with $\mathrm{R}>1$ ALL SOUTH
No apparent influence of season (summer and fall) and type of gear (longline or gillnet)

M:F Ratio (R)

Temp for North ($\mathrm{n}=19$) ???
Unusual cold bottom water on May ($n=7$) mean $=4.9^{\circ} \mathrm{C}$, range $4.7-5.8^{\circ} \mathrm{C}$ at depths between $40-50 \mathrm{~m}$

Gear Temp and SWS $\rho=0.505 ; P=0.016$

South

Gear Depth and Gear Temp $\rho=-0.89 ; P<0.001$

M:F Ratio	Gear Depth	Gear T	Surface Water Temperature	Surface Water Salinity
North	-0.05	0.310	0.092	0.396^{*}
South	-0.810^{*}	0.774^{*}	-0.190	0.308

M:F Ratio (R)

Environmental parameter	North	South	Statistic
Bottom temperature $\left({ }^{\circ} \mathrm{C}\right)$	$4.7-10.9 ; 7.9 \pm 2.1$	$5.8-10.5 ; 7.3 \pm 1.7$	$\mathrm{~W}=185.5 ; \mathrm{P}=0.27$
Surface temperature $\left({ }^{\circ} \mathrm{C}\right)$	$8.9-19.2 ; 14.4 \pm 3.5$	$14.5-19.6 ; 17.4 \pm 1.5$	$\mathrm{~W}=70.5 ; \mathrm{P}=0.003^{*}$
Water depth (m)	$10.1-51.8 ; 33 \pm 10.4$	$20.7-77.7 ; 46.5 \pm 23$	$\mathrm{~W}=308 ; \mathrm{P}=0.19$
Surface salinity	$29.4-31.4 ; 30.3 \pm 0.7$	$29.3-30.8 ; 30.2 \pm 0.4$	$\mathrm{~W}=162.5 ; \mathrm{P}=0.74$

The two areas differed in SST, with the South warmer than the North area The South is characterized by a steep decline in sea bottom depth within ≈ 10 miles from shore that is not a characteristic of the North area

Date	Season	Gear	Area	Settime	Pulltime	Depth (\mathbf{m})	M:F Ratio	Males No	Females No
$10 / 11 / 2010$	Fall	Gillnet	S	$7: 30$	$8: 30$	5.8	0	0	30
$10 / 11 / 2010$	Fall	Gillnet	S	$9: 15$	$10: 30$	6.1	0.2	4	20
$10 / 11 / 2010$	Fall	Gillnet	S	$11: 24$	$12: 30$	5.8	0.064	3	47
$10 / 11 / 2010$	Fall	Gillnet	S	$13: 17$	$14: 15$	5.9	0.059	3	51
$10 / 12 / 2010$	Fall	Gillnet	S	$15: 00$	$8: 11$	6.4	0.014	1	70
$10 / 12 / 2010$	Fall	Gillnet	S	$7: 37$	$9: 40$	5.4	0.250	6	24
$10 / 12 / 2010$	Fall	Gillnet	S	$9: 23$	$10: 55$	NA	0	0	2
$10 / 12 / 2010$	Fall	Gillnet	S	$10: 07$	$12: 58$	NA	0.3	3	10
$10 / 12 / 2010$	Fall	Gillnet	S	$11: 41$	$12: 58$	NA	0	0	2
$10 / 13 / 2010$	Fall	Gillnet	S	$5: 22$	$8: 07$	NA	0.052	7	135
$10 / 13 / 2010$	Fall	Gillnet	S	$6: 02$	$9: 30$	NA	0.043	2	46
$10 / 13 / 2010$	Fall	Gillnet	S	$9: 17$	$11: 27$	NA	0	0	11
$10 / 13 / 2010$	Fall	Gillnet	S	$10: 14$	$12: 27$	5.7	0	0	51
$10 / 13 / 2010$	Fall	Gillnet	S	$11: 45$	$14: 49$	6	0.042	1	24
$10 / 13 / 2010$	Fall	Gillnet	S	$13: 06$	$15: 19$	5.8	0	0	35

Rhode Island (Oct 2010)
$>\mathrm{R}<1$ (more females)
$>$ Shallow waters, mean depth $=5.9 \mathrm{~m}$ and range between 5.4 and 6.4 m

Results - North Area

Fishing Gear ($\mathrm{n}=10$ for longline and $\mathrm{n}=29$ for gillnet)

Wilcox t.test
§ $W=84.5 ; P=0.04$
q $W=68 ; P=0.014$

Depth ($n_{0}=13, n_{1}=23, n_{2}=3$)

Time ($\mathrm{n}_{0}=29, \mathrm{n}_{1}=10$)

Wilcox t.test

$$
\text { ô:q (R) } W=193 ; P=0.1
$$

one longline set on August 2011: 128 ô and 346 ㅇ

Results - South Area

Fishing gear ($\mathrm{n}=7$ for longline and $\mathrm{n}=13$ for gillnet)

Wilcox t.test
त̂ $W=14 ; ~ P=0.01$
ot:q (R) $W=12 ; P=0.009$

Depth ($n_{0}=9, n_{1}=2, n_{2}=9$)

KW-ANOVA
Bonferroni pairwise
ठ $\mathrm{F}=14.5 ; \mathrm{P}<0.001$
ㅇ $F=10.7 ; P=0.0048$
ठ': $:$ (R) $\mathrm{F}=13.5 ; \mathrm{P}<0.001$
Time ($n_{0}=11, n_{1}=5, n_{2}=4$)

KW-ANOVA
Bonferroni pairwise
त $\mathrm{F}=9.8 ; \mathrm{P}=0.007$
of $F=4.1 ; P=0.1$

Longline - related to feeding behavior

$$
P<0.001
$$

$$
P=0.038
$$

$$
\begin{aligned}
& X^{2}=20.3 \\
& P<0.001
\end{aligned}
$$

$$
x^{2}=485.6
$$

$$
G=6.5
$$

$$
F=1.72
$$

$$
P=0.4
$$

Bonferroni pairwise

August 17, 2010 avg time 331 min

$$
\mathrm{G}=87 ; \mathrm{P}<0.001
$$

$$
\delta^{2} x^{2}=277 ; P<0.001
$$

$$
q \mathrm{G}=197 ; \mathrm{P}<0.001
$$

$$
q F=16.5 ; P<0.001
$$

Bonferroni pairwise
Gillnet not necessarily related to feeding behavior

Discussion

$>$ Presence of two main stocks (US and Canadian stocks) with NE as the natural intermixing ground and IR between 28.4\%-38.4\% but NO recaptures from Canada itself.
$>$ Consistency in seasonal North-South migratory behavior (temp. regulated)
$>$ Behavior and habitat-use in Cape Cod differ by location and sex
$>\mathrm{R}$ in the South is related to depth: feeding ($\widehat{\top}$) or mating behavior (\uparrow)
$>q$ in the North inhabit inshore waters but can move to deeper waters
> Higher numbers of dogfish caught with longline

External Tag Recovery

4290^{\prime}
Tagged South of $42^{\circ} 13^{\circ} \longrightarrow$ Iagged North of $42^{\circ} 13$

What is so Important about $42^{\circ} 13^{\prime}$?

Management Recommendations

> Differentiate stock assessment for US and Canadian dogfish
$>$ Intergration of tag-returned information for enhancing TAC allocation by state (consider allocation by temp. forecasting)
$>$ Extend existing acoustic lines further offshore (i.e. continental shelf) and/or develop new acoustic arrays for uncovered areas

Management Recommendations

$>$ Male-only directed fishery at 10 miles NE of Chatham, MA, based on time of the day
$>$ Promote longline employment instead of gillnet in Cape Cod

Future Developments and Directions

> Fine scale monitoring of dogfish behavior patterns in the Cape Cod area (manual acoustic tracking) and specific diet by sex
> M:F ratio changes between gillnet and longline surveys conducted simultaneously at same location
> Results will be relevant for the NMFS, ASMFC, the NEFMC, the MAFMC, and Fisheries and Oceans Canada in revising current management plans for spiny dogfish

Acknowledgments

Commercial Fisheries Research Foundation USFWS

NC-Sea Grant

ACT Network (www.theactnetwork.com)
Lyndell Bade, Chuck Bangley, Evan Knight,Gary Weaver
ECU-Department of Comparative Medicine
Dorcas O'Rourke, Janine Davenport, Anita Coburn
ICSP-CRM
Eric Diaddorio

Chris Hickman

